

PNP SILICON PLANAR EPITAXIAL TRANSISTORS

PN2907 PN2907A

TO-92 Plastic Package RoHS compliant

TO-92

FEATURE:

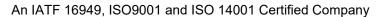
1. This product is available in AEC-Q101 Compliant and PPAP Capable also.

Note: For AEC-Q101 compliant products, please use suffix -AQ in the part number while ordering.

APPLICATIONS:

Complementary Silicon Transistors for Switching and Linear Applications

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C Unless otherwise specified)


PARAMETER	SYMBOL	PN2907	PN2907A	UNIT
Collector Emitter Voltage	V_{CEO}	40	60	V
Collector Base Voltage	V_{CBO}	60	60	V
Emitter Base Voltage	V_{EBO}	5	5	V
Collector Current Continuous	I _C		600	mA
Power Dissipation@ Ta=25°C	В		625	
Derate Above 25°C	$ P_{D}$		5.0	mW/°C
Power Dissipation@ Tc=25°C	В		1.5	W
Derate Above 25°C	$ P_{D}$		12	mW/°C
Operating And Storage Junction Temperature Range	T ₁ , T _{sta}	-55	i to +150	°C

THERMAL RESISTANCE

Junction to ambient	$R_{th(j-a)}$	200	°C/W
Junction to case	$R_{th(j-c)}$	83.3	°C/W

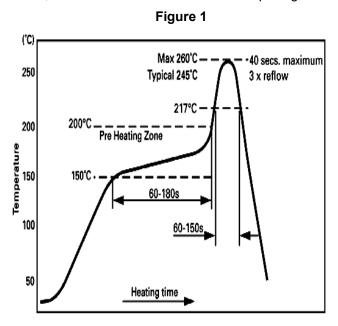
Continental Device India Pvt. Limited

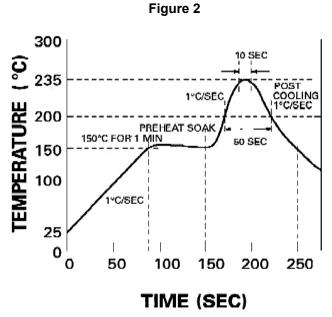
ELECTRICAL CHARACTERISTICS at (Ta = 25 °C Unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITION		PN2907	PN2907A	UNIT
Collector Emitter Voltage	BV _{CEO}	$I_C=10\text{mA}, I_B=0$		40	60	V
Collector Base Voltage	BV _{CBO}	$I_{C}=10\mu A, I_{E}=0$	Max	60	60	V
Emitter Base Voltage	B_{VEBO}	I _E =10μΑ, I _C =0	Max	5	5	V
	ı	$V_{CB} = 50V, I_{E} = 0$	Max	20	10	nA
Collector Cut off Current	I _{CBO}	$V_{CB} = 50V, I_{E} = 0 T_{a} = 150^{\circ}C$	Max	20	10	μΑ
Collector Cut on Current	I _{CEX}	$V_{CE} = 30V, V_{EB} = 0.5V$	Max	50	50	nA
	I _{CEO}	$V_{CE} = 10V, I_{B} = 0$	Max	10	10	nA
Emitter Cut off Current	I _{EBO}	$V_{EB}=3V$, $I_C=0$	Max	10	10	nA
Base Cut off Current	I_{BEX}	$V_{CE} = 30V, V_{EB} = 0.5V$	Max	50	50	nA
		$V_{CE} = 10V, I_{C} = 0.1 \text{mA}$	Min	35	75	
		V_{CE} =10V, I_{C} =1mA	Min	50	100	
DC Current Gain	h_{FE}	V_{CE} =10V, I_{C} =10mA	Min	75	100	
		V _{CE} =10V ¹ ,I _C =150mA		100 ~ 300	100 ~ 300	
		$V_{CE} = 10V^{-1}, I_{C} = 500mA$	Min	30	50	
Collector Emitter Saturation	\/	I _C =150mA,I _B =15mA	Max	0.4	0.4	V
Voltage	$V_{CE(sat)}$	I_C =500mA, I_B = 50mA	Max	1.6	1.6	V
Page Emitter Saturation Voltage	\/	I _C =150mA,I _B =15mA	Max	1.3	1.3	V
Base Emitter Saturation Voltage	$V_{BE(sat)}$	$I_C=500$ mA, $I_B=50$ mA		2.6	2.6	V
DYNAMIC CHARACTERISTICS						
Transition Frequency	f _T	$I_C = 50 \text{mA}, V_{CE} = 20 \text{V}, f = 100 \text{MHz}$	Min	200	200	MHz
Output Capacitance	C_ob	$I_E=0,V_{CB}=10V,f=1MHz$	Max	8	8	pF
Input Capacitance	C_{ib}	Ic=0,V _{EB} =2V,f=1MHz	Max	30	30	pF
SWITCHING CHARCTERISTICS	3					
Delay Time	t_d	-150mA -15mA	Max	10	10	
Rise Time	t _r	$I_{\rm C}$ =150mA, $I_{\rm B1}$ = 15mA $I_{\rm CC}$ =30V $I_{\rm CC}$		40	40	
Turn on Time	t _{on}			50	50	no
Storage Time	t _s	L =450m A L 45m A		80	80	ns
Fall Time	t _f	I _C =150mA, I _{B1} =15mA		30	30	
Turn off Time	t _f	I_{B2} =15mA, V_{CC} =6V		110	110	

Note:

- 1. Pulse Condition: = Width ≤300us, Duty Cycle ≤1%
- 2. For PNP device voltage and current values will be negative (-).




Recommended Reflow Solder Profiles

The recommended reflow solder profiles for Pb and Pb-free devices are shown below.

Figure 1 shows the recommended solder profile for devices that have Pb-free terminal plating, and where a Pb-free solder is used.

Figure 2 shows the recommended solder profile for devices with Pb-free terminal plating used with leaded solder, or for devices with leaded terminal plating used with a leaded solder.

Reflow profiles in tabular form

Profile Feature	Sn-Pb System	Pb-Free System
Average Ramp-Up Rate	~3°C/second	~3°C/second
Preheat – Temperature Range – Time	150-170°C 60-180 seconds	150-200°C 60-180 seconds
Time maintained above: – Temperature – Time	200°C 30-50 seconds	217°C 60-150 seconds
Peak Temperature	235°C	260°C max.
Time within +0 -5°C of actual Peak	10 seconds	40 seconds
Ramp-Down Rate	3°C/second max.	6°C/second max.

Recommended Wave Solder Profiles

The Recommended solder Profile For Devices with Pb-free terminal plating where a Pb-free solder is used

260 260 2ND WAVE

STOCKED

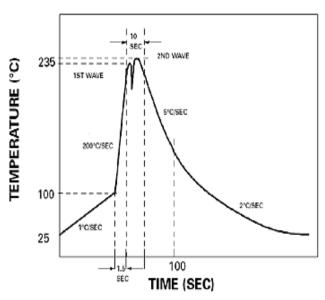
200°C/SEC

100

210 2ND WAVE

210 200°C/SEC

210 2ND WAVE


210 2ND WAVE

210 2ND WAVE

100 2°C/SEC

TIME (SEC)

The Recommended solder Profile For Devices with Pb-free terminal plating used with leaded solder, or for devices with leaded terminal plating used with leaded solder

Wave Profiles in Tabular Form

Profile Feature	Sn-Pb System	Pb-Free System
Average Ramp-Up Rate	~200°C/second	~200°C/second
Heating rate during preheat	Typical 1-2, Max 4°C/sec	Typical 1-2, Max 4°C/Sec
Final preheat Temperature	Within 125°C of Solder Temp	Within 125°C of Solder Temp
Peak Temperature	235°C	260°C max.
Time within +0 -5°C of actual Peak	10 seconds	10 seconds
Ramp-Down Rate	5°C/second max.	5°C/second max

Test Circuits

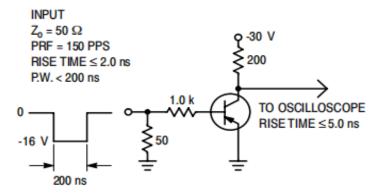


Figure 1. Delay and Rise Time Test Circuit

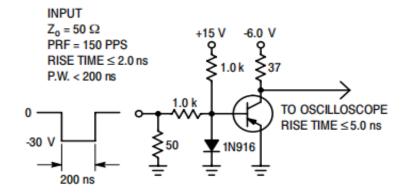


Figure 2. Storage and Fall Time Test Circuit

TYPICAL CHARACTERISTIC CURVES

Figure 3. DC Current Gain

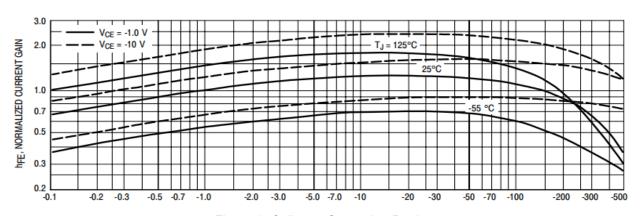


Figure 4. Collector Saturation Region

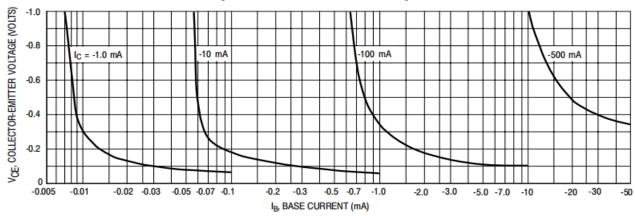
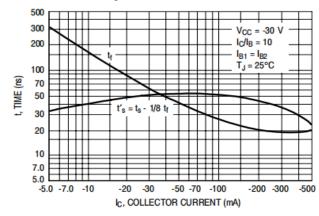



Figure 5. Turn-On Time

Figure 6. Turn-On Time

TYPICAL CHARACTERISTIC CURVES

Figure 7. Frequency Effects

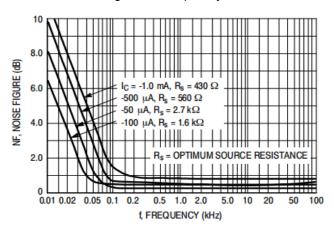


Figure 8. Source Resistance Effects

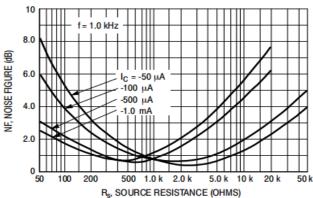


Figure 9. Capacitance

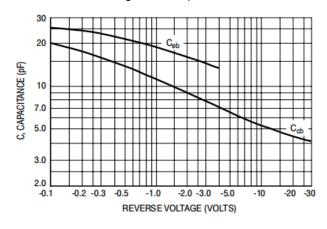


Figure 10. Current-Gain — Bandwidth Product

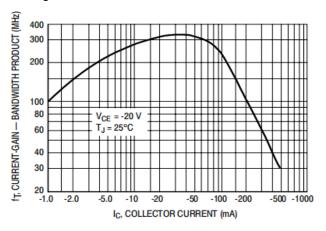


Figure 11. "On" Voltage

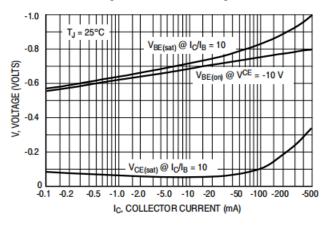
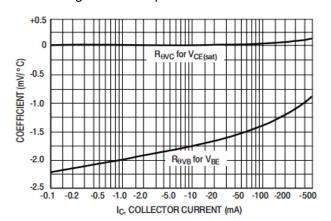
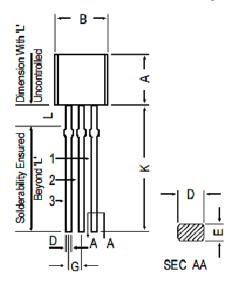



Figure 12. Temperature Coefficients



PACKAGE DETAILS

TO-92 Leaded Plastic Package

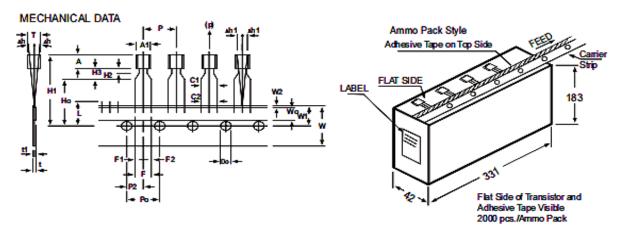
DIM	MIN	MAX
Α	4.32	5.33
В	4.45	5.20
С	3.18	4.19
D	0.41	0.55
Е	0.35	0.50
F		5°
G	1.14	1.40
Н	1.20	1.53
K	12.70	
L	1.982	2.082

All dimensions are in mm

PIN CONFIGURATION

- 1. Emitter
- 2. Base
- 3. Collector

Packaging Information


PACKAGE	STANDA	ARD PACK	INNER CARTON BOX OUTER CARTON BOX				
	Details	Net Weight/Qty	Size	Qty	Size	Qty	Gr Wt
TO-92 Bulk	1K/polybag	200 gm/1K pcs	3" x 7.5" x 7.5"	5K	17" x 15" x 13.5"	80K	23 kgs
TO-92 T&A	2K/ammo box	645 gm/2K pcs	12.5" x 8" x 1.8"	2K	17" x 15" x 13.5"	32K	12.5 kgs

TO-92 Transistors on Tape and Ammo Pack

			SPECIFICATION		ON	
ITEM	SYMBOL	MIN.	NOM	MAX	TOL.	REMARKS
BODY WIDTH	A1	4.0		4.8		
BODY HEIGHT	A	4.8		5.2		
BODY THICKNESS	Т	3.9		4.2		
PITCH OF COMPONENT	P	l	12.7		%%P1	
FEED HOLE PITCH	Po	l	12.7		%%P0.3	CUMULATIVE PITCHERROR 1.0 mm/20 PITCH
FEED HOLE CENTRE TO		l				
COMPONENT CENTRE	P2	l	6.35		%%P0.4	TO BE MEASURED AT BOTTOM OF CLINCH
DISTANCE BETWEEN OUTER		l			+0.6	
LEADS	F	l	5.08		-0.2	
COMPONENT AUGNMENT SIDE VIEW	Δh	l	0	1.0		AT TOP OF BODY
COMPONENT AUGNMENT FRONT MEW	∆h1	l	0	1.3		AT TOP OF BODY
TAPEWIDTH	w	l	18		%%P0.5	
HOLD-DOWN TAPE WIDTH	Wo	l	6		%%P0.2	
HOLE POSITION	W1	l	9		+0.7	
		l			-0.5	
HOLD-DOWN TAPE POSITION	W2	l	0.5		%%P0.2	
LEAD WIRE CLINCH HEIGHT	Ho	l	16		%%P0.5	
COMPONENT HEIGHT	H1	l		23.25		
LENGTH OF SNIPPED LEADS	L	l		11.0		
FEED HOLE DIAMETER	Do	l	4		%%P0.2	
TOTAL TAPE THICKNESS	t	l		1.2		t1 0.3 - 0.6
LEAD - TO - LEAD DISTANCE	F1,F2		2.54		+0.4, -0.1	
STAND OFF	H2	0.45		1.45		
CLINCH HEIGHT	H3	l		3.0		
LEAD PARALLELISM	[01-02]			0.22		
PULL - OUT FORCE	(P)	6N				

NOTES

- 1. Maximum Alignment Deviation Between Leads Not to be Greater Than 0.2 mm
- 2. Maximum Non-Cumulative Variation Between Tape Feed Hole shall not exceed 1 mm In 20 Pitches.
- 3. Hold down tape not to exceed beyond the edge(S) of carrier tape and there shall be exposure of adhesive.
- 4. No more then 3 Consecutive Missing Components is permitted.
- 5. A tape Trailer, Having at least three feed hole is required after the last component.
- 6. Splices shall not interfere with the sprocket feed holes.

Recommended Product Storage Environment for Discrete Semiconductor Devices

This storage environment assumes that the Diodes and transistors are packed properly inside the original packing supplied by CDIL.

- · Temperature 5 °C to 30 °C
- · Humidity between 40 to 70 %RH
- · Air should be clean.
- · Avoid harmful gas or dust.
- · Avoid outdoor exposure or storage in areas subject to rain or water spraying .
- · Avoid storage in areas subject to corrosive gas or dust. Product shall not be stored in areas exposed to direct sunlight.
- · Avoid rapid change of temperature.
- · Avoid condensation.
- · Mechanical stress such as vibration and impact shall be avoided.
- · The product shall not be placed directly on the floor.
- The product shall be stored on a plane area. They should not be turned upside down. They should not be placed against the wall.

Shelf Life of CDIL Products

The shelf life of products is the period from product manufacture to shipment to customers. The product can be unconditionally shipped within this period. The period is defined as 2 years.

If products are stored longer than the shelf life of 2 years the products shall be subjected to quality check as per CDIL quality procedure.

The products are further warranted for another one year after the date of shipment subject to the above conditions in CDIL original packing.

Floor Life of CDIL Products and MSL Level

When the products are opened from the original packing, the floor life will start.

For this, the following JEDEC table may be referred:

JEDEC MSL Level					
Level	Time	Condition			
1	Unlimited	≤30 °C / 85% RH			
2	1 Year	≤30 °C / 60% RH			
2a	4 Weeks	≤30 °C / 60% RH			
3	168 Hours	≤30 °C / 60% RH			
4	72 Hours	≤30 °C / 60% RH			
5	48 Hours	≤30 °C / 60% RH			
5a	24 Hours	≤30 °C / 60% RH			
6	Time on Label(TOL)	≤30 °C / 60% RH			

Customer Notes

Component Disposal Instructions

- 1. CDIL Semiconductor Devices are RoHS compliant, customers are requested to please dispose as per prevailing Environmental Legislation of their Country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished in the Data Sheet and on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

Continental Device India Pvt. Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.
Telephone +91-11-2579 6150, 4141 1112 Fax +91-11-2579 5290, 4141 1119

email@cdil.com www.cdil.com CIN No. U32109DL1964PTC004291