

NPN Silicon Power DarligtonTransistor

with Base-Emitter Speedup Diode 60 AMPERE, 200 AND 250 VOLTS, 250 WATTS

ISO 14001

MJ10020 MJ10021

TO-3 Metal Can Package RoHS compliant

GENERAL DESCRIPTION

The MJ10020 and MJ10021 Darlington transistors are designed for high–voltage, high–speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line operated switchmode applications

FEATURES:

1. Fast Turn-Off Times

150 ns Inductive Fall Time at 25° C (Typ) 750 ns Inductive Storage Time at 25 °C (Typ)

- 2. Operating Temperature Range –65 to +200° C
- 3. 100° C Performance Specified for:

Reversed Biased SOA with Inductive Loads

Switching Times with Inductive Loads

Saturation Voltages

APPLICATIONS:

- 1. AC and DC Motor Controls
- 2. Switching Regulators
- 3. Solenoid and Relay Drivers

ABSOLUTE MAXIMUM RATING (T_A=25 ° C unless otherwise specified)

Rating	Symbol	MJ10020	MJ10021	Unit
Collector–Emitter Voltage	VCEO	200	250	Vdc
Collector–Emitter Voltage	VCEV	300 350		Vdc
Emitter Base Voltage	V _{EB}	8.0		Vdc
Collector Current — Continuous — Peak (1)	IC ICM	60 100		Adc
Base Current — Continuous — Peak (1)	I _B IBM	20 30		Adc
Total Power Dissipation @ $T_C = 25^{\circ}C$ @ $T_C = 100^{\circ}C$ Derate above 25°C	PD	250 143 1.43		Watts W/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200		°C

THERMAL CHARACTERISTICS

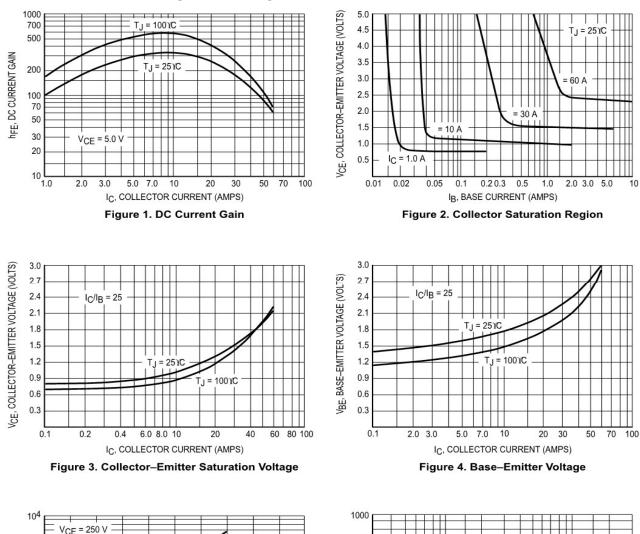
Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Case	R _{JC}	0.7	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/8 from Case for 5 Seconds	ΤL	275	°C

(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle \leq 10%.

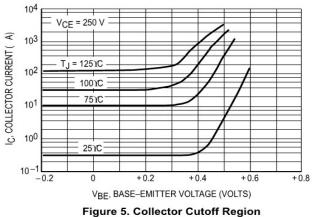
Continental Device India Pvt. Limited

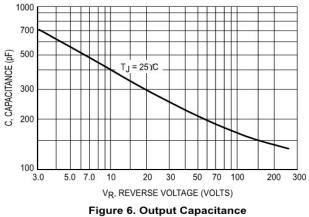
An IATF 16949, ISO9001 and ISO 14001 Certified Company

ELECTRICAL CHARACTERISTICS (T_A=25 ° C unless otherwise specified)


Characteristic			Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTI	CS						
Collector–Emitter Sus (I _C = 100 mA, I _B =	taining Voltage (Table 1) 0)	MJ10020 MJ10021	V _{CEO(sus)}	200 250	_	_	Vdc
Collector Cutoff Current (V _{CEV} = Rated Value, V _{BE(off)} = 1.5 Vdc) (V _{CEV} = Rated Value, V _{BE(off)} = 1.5 Vdc, T _C = 150°C)			ICEV	1 1	=	0.25 5.0	mAdc
Collector Cutoff Curre (V _{CE} = Rated V _{CE}	nt _V , R _{BE} = 50 ,T _C = 100°C)		ICER	-	-	5.0	mAdc
Emitter Cutoff Current ($V_{EB} = 2.0 \text{ V}, I_{C} = 0$)			IEBO			175	mAdc
SECOND BREAKDOW	'n						
Second Breakdown C	ollector Current with base forward biased		I _{S/b}		See Fig	gure 13	
Clamped Inductive SC	DA with Base Reverse Biased		RBSOA		See Fig	gure 14	
ON CHARACTERISTIC	CS (1)						
DC Current Gain (I _C = 15 Adc, V _{CE} =	= 5.0 V)		hFE	75	_	1000	-
Collector–Emitter Saturation Voltage $(I_C = 30 \text{ Adc}, I_B = 1.2 \text{ Adc})$ $(I_C = 60 \text{ Adc}, I_B = 4.0 \text{ Adc})$ $(I_C = 30 \text{ Adc}, I_B = 1.2 \text{ Adc}, T_C = 100^{\circ}\text{C})$			VCE(sat)			2.2 4.0 2.4	Vdc
Base–Emitter Saturation Voltage (I _C = 30 Adc, I _B = 1.2 Adc) (I _C = 30 Adc, I _B = 1.2 Adc, T _C = 100°C)		V _{BE(sat)}	11	_	3.0 3.5	Vdc	
Diode Forward Voltag (I _F = 30 Adc)	Diode Forward Voltage		Vf	1	2.5	5.0	Vdc
DYNAMIC CHARACTE	RISTICS						1
Output Capacitance ($V_{CB} = 10 \text{ Vdc}, I_E = 0, f_{test} = 1.0 \text{ kHz}$)		C _{ob}	175	-	700	pF	
SWITCHING CHARAC	TERISTICS						
Resistive Load (Tabl	e 1)						
Delay Time			^t d	_	0.02	0.2	s
Rise Time	$(V_{CC} = 175 \text{ Vdc}, I_C = 30 \text{ A},$		t _r	-	0.30	1.0	s
Storage Time	I_{B1} = Adc, $V_{BE(off)}$ = 5.0 V, t_p = 25 s Duty Cycle \leq 2.0%).		ts		1.0	3.5	s
Fall Time			t _f	_	0.07	0.5	s
Inductive Load, Clan	nped (Table 1)			-		ā	50
Storage Time	I _{CM} = 30 A(pk), V _{CEM} = 200 V, I _{B1} = 1	.2 A,	t _{sv}	-	1.2	3.5	s
Crossover Time	$V_{BE(off)} = 5 V, T_C = 100YC)$		t _c		0.45	2.0	s
Storage Time			t _{sv}		0.75	-	s
Crossover Time	$V_{BE(off)} = 5 V, T_{C} = 25 IC)$		t _c	-	0.25	-	s
Fall Time			t _{fi}	_	0.15	_	s

(1) Pulse Test: PW = 300 s, Duty Cycle $\leq 2\%$.


MJ10020_21 Rev0_04052020EM



TYPICAL CHARACTERISTIC CIRVES

MJ10020_21 Rev0_04052020EM

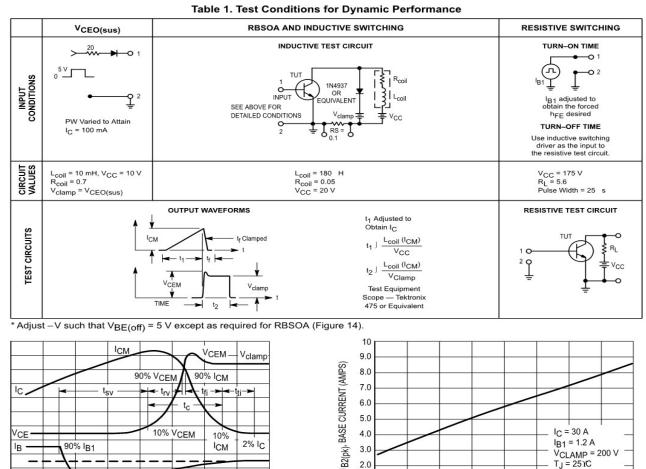
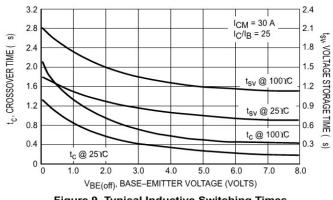


Figure 7. Inductive Switching Measurements

TIME


5.0

TJ = 251C

6.0

7.0

8.0

2.0 1.0 0

0

1.0

2.0

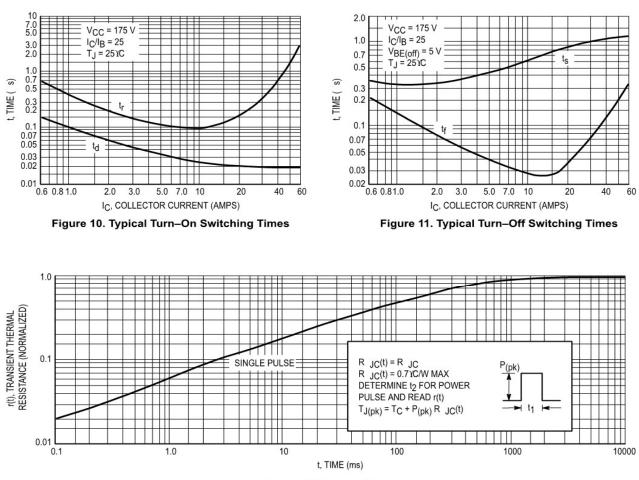

3.0

Figure 9. Typical Inductive Switching Times

MJ10020 21 Rev0_04052020EM

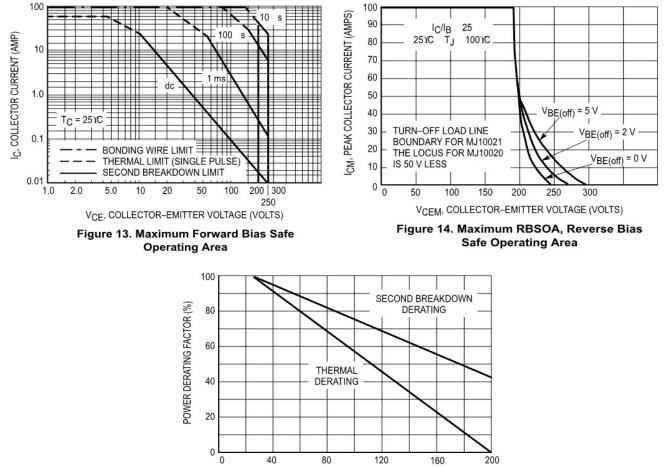
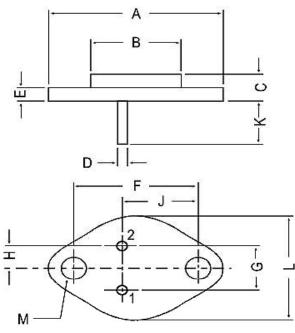

RESISTIVE SWITCHING

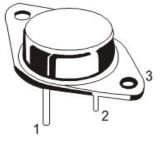
Figure 12. Thermal Response

The Safe Operating Area figures shown in Figures 13 and are specified for these devices under the test conditions shown.



T_C, CASE TEMPERATURE (YC)

Figure 15. Power Derating



DIM	MIN.	MAX.
A	_	39.37
В	_	22.22
С	6.35	8.50
D	0.96	1.09
E		1.77
F	29.90	30.40
G	10.69	11.18
Н	5.20	5.72
J	16.64	17.15
K	11.15	12.25
L		26.67
М	3.84	4.19

All dimensions in mm.

PIN CONFIGURATION

- 1. BASE
- 2. EMITTER
- 3. COLLECTOR

Packing Detail

PACKAGE	STAND	ARD PACK	INNER CARTON BOX		OUTER CARTON BOX		<
	Details	Net Weight/Qty	Size	Qty	Size	Qty	Gr Wt
TO-3	100 pcs/pkt	1.3 kg/100 pcs	12.5" x 8" x 1.8"	0.1K	17" x 11.5" x 21"	2K	27.5 kgs

Recommended Product Storage Environment for Discrete Semiconductor Devices

This storage environment assumes that the Diodes and transistors are packed properly inside the original packing supplied by CDIL.

- · Temperature 5 °C to 30 °C
- · Humidity between 40 to 70 %RH
- · Air should be clean.
- · Avoid harmful gas or dust.
- $\cdot\,$ Avoid outdoor exposure or storage in areas subject to rain or water spraying .
- · Avoid storage in areas subject to corrosive gas or dust. Product shall not be stored in areas exposed to direct sunlight.
- · Avoid rapid change of temperature.
- · Avoid condensation.
- $\cdot\,$ Mechanical stress such as vibration and impact shall be avoided.
- · The product shall not be placed directly on the floor.
- The product shall be stored on a plane area. They should not be turned upside down. They should not be placed against the wall.

Shelf Life of CDIL Products

The shelf life of products is the period from product manufacture to shipment to customers. The product can be unconditionally shipped within this period. The period is defined as 2 years.

If products are stored longer than the shelf life of 2 years the products shall be subjected to quality check as per CDIL quality procedure.

The products are further warranted for another one year after the date of shipment subject to the above conditions in CDIL original packing.

Floor Life of CDIL Products and MSL Level

When the products are opened from the original packing, the floor life will start.

For this, the following JEDEC table may be referred:

JEDEC MSL Level				
Level	Time	Condition		
1	Unlimited	≤30 °C / 85% RH		
2	1 Year	≤30 °C / 60% RH		
2a	4 Weeks	≤30 °C / 60% RH		
3	168 Hours	≤30 °C / 60% RH		
4	72 Hours	≤30 °C / 60% RH		
5	48 Hours	≤30 °C / 60% RH		
5a	24 Hours	≤30 °C / 60% RH		
6	Time on Label(TOL)	≤30 °C / 60% RH		

Customer Notes

Component Disposal Instructions

- 1. CDIL Semiconductor Devices are RoHS compliant, customers are requested to please dispose as per prevailing Environmental Legislation of their Country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished in the Data Sheet and on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered trademark of

Continental Device India Pvt. Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.

Telephone +91-11-2579 6150, 4141 1112 Fax +91-11-2579 5290, 4141 1119

email@cdil.com www.cdil.com

CIN No. U32109DL1964PTC004291

MJ10020_21 Rev0_04052020EM