





### **200V PNP Medium Power Transistor**

**CZT956** 



SOT-223
Surface Mount
Plastic Package
RoHS compliant

SOT-223

#### **FEATURE:**

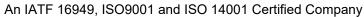
- 1.  $BV_{CEO} > -200V$
- 2. I<sub>C</sub> = -2A High Continuous Collector Current
- 3.  $I_C$  = -5A Peak Pulse Current
- 4. Low Saturation Voltage  $V_{CE (sat)}$  < -165mV @ -1A
- 5.  $H_{\text{FE}}$  Specified up to -5A for a High Gain Hold-Up
- 6. This product is available in AEC-Q101 Compliant and PPAP Capable also.

Note: For AEC-Q101 compliant products, please use suffix -AQ in the part number while ordering.

## ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C Unless otherwise specified)

| PARAMETER                    | SYMBOL          | VALUE | UNIT |
|------------------------------|-----------------|-------|------|
| Collector Emitter Voltage    | $V_{CEO}$       | 200   | V    |
| Collector Base Voltage       | $V_{CBO}$       | 220   | V    |
| Emitter Base Voltage         | $V_{EBO}$       | 7     | V    |
| Peak Pulse Current           | I <sub>CM</sub> | 5     | Α    |
| Continuous Collector Current | I <sub>C</sub>  | 2     | A    |

## **Thermal Characteristics** (T<sub>A</sub> = 25°C, unless otherwise specified)


| PARAMETER                               | SYMBOL          | VALUE            | UNIT      |  |
|-----------------------------------------|-----------------|------------------|-----------|--|
| Dower Dissipation 1                     |                 | 3                | W         |  |
| Power Dissipation <sup>1</sup>          |                 | 24               | ۷V        |  |
| Linear Derating Factor <sup>2</sup>     | P <sub>D</sub>  | 2                | mW/°C     |  |
|                                         |                 | 13               | TITIVV/ C |  |
| Thermal Resistance, Junction to Ambient | $R_{\theta JA}$ | 42 <sup>1</sup>  | °C/W      |  |
| Thermal Resistance, Sunction to Ambient | ' <b>`</b> ӨЈА  | 78 <sup>2</sup>  |           |  |
| Thermal Resistance Junction to Lead     | $R_{\theta JL}$ | 8.8 <sup>3</sup> | °C/W      |  |
| Operating and Storage Temperature Range | $T_j, T_{stg}$  | - 55 to +150     | °C        |  |

ESD Ratings 4

| PARAMETER                                  | SYMBOL  | VALUE | UNIT | JEDEC Class |
|--------------------------------------------|---------|-------|------|-------------|
| Electrostatic Discharge - Human Body Model | ESD HBM | 4000  | V    | 3A          |
| Electrostatic Discharge - Machine Model    | ESD MM  | 400   | v    | С           |



# Continental Device India Pvt. Limited





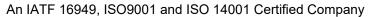


## **ELECTRICAL CHARACTERISTICS** at (T<sub>a</sub> = 25 °C Unless otherwise specified)

| Parameter                                          | Symbol               | Test Conditions                                         | Min | Тур  | Max  | Units |  |
|----------------------------------------------------|----------------------|---------------------------------------------------------|-----|------|------|-------|--|
| Collector-base breakdown voltage                   | $V_{(BR)CBO}$        | $I_{C} = -100 \mu A, I_{E} = 0$                         | 220 | 300  | 1    |       |  |
| Collector-emitter breakdown voltage                | V <sub>(BR)CEO</sub> | $I_{\rm C}$ = -1mA, $I_{\rm B}$ = 0 $^{5}$              | 200 | 240  |      | V     |  |
| Collector-emitter breakdown voltage                | $V_{(BR)CER}$        | $I_C = -1\mu A$ , RB $\leq 1k\Omega^5$                  | 220 | 300  |      |       |  |
| Emitter-base breakdown voltage                     | $V_{(BR)EBO}$        | I <sub>E</sub> =-100μA,I <sub>C</sub> =0                | 7   | 8    |      |       |  |
|                                                    | I <sub>CBO</sub>     | $V_{CB} = -200V$ ,                                      |     |      | 50   | nA    |  |
| Collector cut-off current                          |                      | V <sub>CB</sub> = -200V, T <sub>a</sub> = 100° C        |     |      | 1    | μA    |  |
| Callector Cut Off Current                          | I <sub>CER</sub>     | $V_{CB} = -200V$ ,                                      |     |      | 50   | nA    |  |
| Collector Cut-Off Current                          | R≤1kΩ                | V <sub>CB</sub> = -200V, T <sub>a</sub> = 100° C        |     |      | 1    | μA    |  |
| Emitter cut-off current                            | I <sub>EBO</sub>     | V <sub>EB</sub> = -6V                                   |     |      | 10   | nA    |  |
|                                                    | h <sub>FE</sub> 1    | $V_{CE} = -5V, I_{C} = -10mA$                           | 100 | 200  |      |       |  |
| 0 6                                                | h <sub>FE</sub> 2    | $V_{CE} = -5V, I_{C} = -1A$                             | 100 | 200  | 300  |       |  |
| Static forward current transfer ratio <sup>5</sup> | h <sub>FE</sub> 3    | $V_{CE} = -5V, I_{C} = -2A$                             | 50  | 150  |      |       |  |
|                                                    | h <sub>FE</sub> 4    | $V_{CE} = -5V, I_{C} = -5A$                             |     | 10   |      |       |  |
|                                                    |                      | $I_{\rm C} = -100 \text{mA}, I_{\rm B} = -10 \text{mA}$ |     | 30   | 50   | mV    |  |
| Collector-emitter saturation voltage <sup>5</sup>  | V <sub>CE(sat)</sub> | $I_{\rm C} = -1A, I_{\rm B} = -100 {\rm mA}$            |     | 120  | 165  | mV    |  |
|                                                    |                      | $I_{\rm C} = -2A, I_{\rm B} = -400 \text{mA}$           |     | 168  | 275  | mV    |  |
| Base-emitter saturation voltage <sup>5</sup>       | V <sub>BE(sat)</sub> | $I_{\rm C} = -2A, I_{\rm B} = -400 \text{mA}$           |     | 970  | 1110 | mV    |  |
| Base-Emitter Turn-On Voltage <sup>5</sup>          | $V_{BE(on)}$         | $I_{\rm C}$ = -2A, $V_{\rm CE}$ = -5V                   |     | 810  | 950  | mV    |  |
| Transition frequency 5                             | f <sub>T</sub>       | V <sub>CE</sub> =-10V, I <sub>C</sub> =-100mA,          |     | 110  |      | MHz   |  |
| Output capacitance                                 | $C_{obo}$            | V <sub>CB</sub> = -20V, f = 1MHz                        |     | 32   |      | рF    |  |
| Switching Times                                    | t <sub>on</sub>      | $I_{\rm C}$ =-1A, $V_{\rm CC}$ = -50V,                  |     | 67   |      | nS    |  |
| Switching Times                                    | t <sub>off</sub>     | $I_{B1} = -I_{B2} = -100 \text{mA}$                     |     | 1140 |      | nS    |  |

#### Notes:

- 1. For a device mounted with the collector lead on 52mm x 52mm 2oz copper that is on a single sided 1.6mm FR4 PCB;
- 2. Same as Note 6, except mounted on 25mm x 25mm 1oz copper.
- 3. Thermal resistance from junction to solder-point (at the end of the collector lead).
- 4. Refer to JEDEC specification JESD22-A114 and JESD22-A115.
- 5. Measured under pulsed conditions. Pulse Width=300µs. Duty cycle ≤2%
- 6. For PNP device voltage and current values will be negative (-).




250

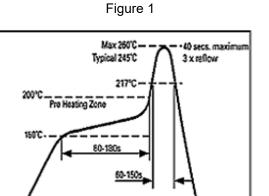
200

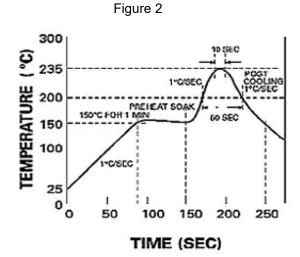
150

# Continental Device India Pvt. Limited







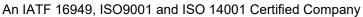


#### **Recommended Reflow Solder Profiles**

The recommended reflow solder profiles for Pb and Pb-free devices are shown below.

Figure 1 shows the recommended solder profile for devices that have Pb-free terminal plating, and where a Pb-free solder is used.

Figure 2 shows the recommended solder profile for devices with Pb-free terminal plating used with leaded solder, or for devices with leaded terminal plating used with a leaded solder.





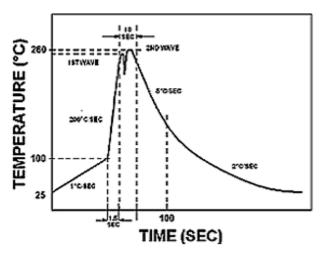

#### Reflow profiles in tabular form

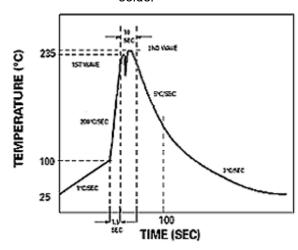
| Profile Feature                    | Sn-Pb System    | Pb-Free System |
|------------------------------------|-----------------|----------------|
| Average Ramp-Up Rate               | ~3°C/second     | ~3°C/second    |
| Preheat                            |                 |                |
| – Temperature Range                | 150-170°C       | 150-200°C      |
| – Time                             | 60-180 seconds  | 60-180 seconds |
| Time maintained above:             |                 |                |
| – Temperature                      | 200°C           | 217°C          |
| – Tim                              | 30-50 seconds   | 60-150 seconds |
| Peak Temperature                   | 235°C           | 260°C max.     |
| Time within +0 -5°C of actual Peak | 10 seconds      | 40 seconds     |
| Ramp-Down Rate                     | 3°C/second max. | 6°C/second max |



# Continental Device India Pvt. Limited






#### **Recommended Wave Solder Profiles**

The Recommended solder Profile For Devices with Pbfree terminal plating where a Pb-free solder is used

The Recommended solder Profile For Devices with Pbfree terminal plating used with leaded solder, or for devices with leaded terminal plating used with leaded solder

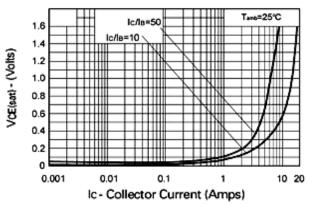




#### **Wave Profiles in Tabular Form**

| Profile Feature                    | Sn-Pb System                | Pb-free System              |
|------------------------------------|-----------------------------|-----------------------------|
| Average Ramp-Up Rate               | ~200°C/second               | ~200°C/second               |
| Heating rate during preheat        | Typical 1-2, Max 4°C/sec    | Typical 1-2, Max 4°C/Sec    |
| Final preheat Temperature          | Within 125°C of Solder Temp | Within 125°C of Solder Temp |
| Peak Temperature                   | 235°C                       | 260°C max.                  |
| Time within +0 -5°C of actual Peak | 10 seconds                  | 10 seconds                  |
| Ramp-Down Rate                     | 5°C/second max.             | 5°C/second max.             |




# Continental Device India Pvt. Limited An IATF 16949, ISO9001 and ISO 14001 Certified Company





### TYPICAL CHARACTERISTIC CURVES

Fig. 1 Collector-Emitter Saturation Voltage v/s Collector Fig. 4 Collector-Emitter Saturation Voltage v/s Collector current



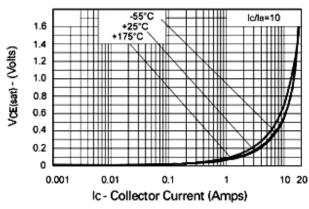



Fig 2. Gain v/s collector current

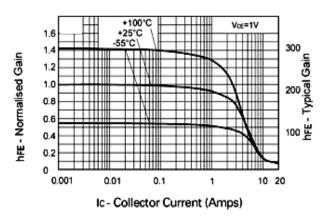



Fig 5. Collector-Base Saturation Voltage v/s Collector current

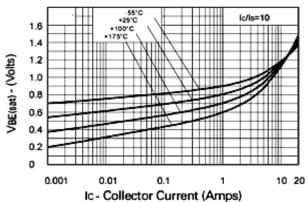
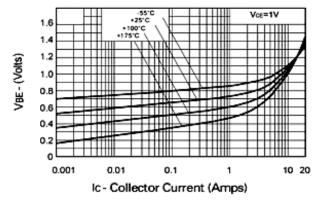




Fig 3. Collector-Base Saturation Voltage v/s Collector current





# Continental Device India Pvt. Limited An IATF 16949, ISO9001 and ISO 14001 Certified Company





#### TYPICAL CHARACTERISTIC CURVES

Fig 6: Safe operating Area

Single Pulse Test Tamb=25C

10

10

10

10

10

100

1000

VOE - Collector Voltage (V)

Fig 7. Transient Thermal Impedance

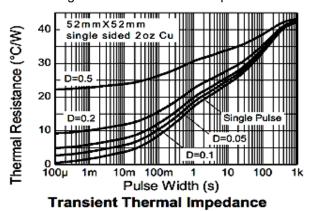
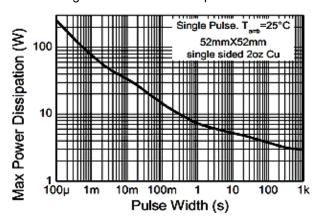



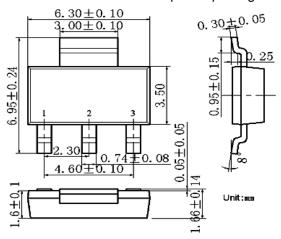

Fig 8: Derating curve 3.0 Max Power Dissipation (W) 2.5 52mmX52mm single sided 2oz Cu 2.0 1.5 1.0 25mmX25mm 0.5 single sided 1oz Cu 60 80 100 120 20 40

Fig 9. Pulse Power dissipation

Temperature (°C)






# Continental Device India Pvt. Limited An IATF 16949, ISO9001 and ISO 14001 Certified Company





## **PACKAGE DETAILS**

## SOT-223 Surface Mount plastic package



# Pin configuration

- 1. Base
- 2. Collector
- 3. Emitter







# Recommended Product Storage Environment for Discrete Semiconductor Devices

This storage environment assumes that the Diodes and transistors are packed properly inside the original packing supplied by CDIL.

- · Temperature 5 °C to 30 °C
- · Humidity between 40 to 70 %RH
- · Air should be clean.
- · Avoid harmful gas or dust.
- · Avoid outdoor exposure or storage in areas subject to rain or water spraying .
- · Avoid storage in areas subject to corrosive gas or dust. Product shall not be stored in areas exposed to direct sunlight.
- · Avoid rapid change of temperature.
- · Avoid condensation.
- · Mechanical stress such as vibration and impact shall be avoided.
- · The product shall not be placed directly on the floor.
- The product shall be stored on a plane area. They should not be turned upside down. They should not be placed against the wall.

#### **Shelf Life of CDIL Products**

The shelf life of products is the period from product manufacture to shipment to customers. The product can

### Floor Life of CDIL Products and MSL Level

When the products are opened from the original packing, the floor life will start. For this, the following JEDEC table may be referred:

| JEDEC MSL Level |                    |                 |  |  |
|-----------------|--------------------|-----------------|--|--|
| Level           | Time               | Condition       |  |  |
| 1               | Unlimited          | ≤30 °C / 85% RH |  |  |
| 2               | 1 Year             | ≤30 °C / 60% RH |  |  |
| 2a              | 4 Weeks            | ≤30 °C / 60% RH |  |  |
| 3               | 168 Hours          | ≤30 °C / 60% RH |  |  |
| 4               | 72 Hours           | ≤30 °C / 60% RH |  |  |
| 5               | 48 Hours           | ≤30 °C / 60% RH |  |  |
| 5a              | 24 Hours           | ≤30 °C / 60% RH |  |  |
| 6               | Time on Label(TOL) | ≤30 °C / 60% RH |  |  |







#### **Customer Notes**

#### **Component Disposal Instructions**

- 1. CDIL Semiconductor Devices are RoHS compliant, customers are requested to please dispose as per prevailing Environmental Legislation of their Country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

#### Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished in the Data Sheet and on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.



CDIL is a registered trademark of Continental Device India Pvt. Limited