

NPN SILICON PLANAR EPITAXIAL TRANSISTORS

CMBT2222 CMBT2222A

SOT-23 SMD Package RoHS compliant

SOT-23

Device marking

CMBT2222 =1B

CMBT2222A =1P

ABSOLUTE MAXIMUM RATINGS $(T_a = 25 \, ^{\circ}C)$

Parameter		Symbol	Min/ Max	CMBT 2222	CMBT 2222A	Unit
Collector-base voltage (open emitter)		V_{CBO}	Max	60	75	V
Collector emitter voltage (or	pen base)	V_{CEO}	Max	30	40	V
Emitter base voltage (open	collector)	V_{EBO}	Max	5	6	V
Collector current (dc.)		I _c	Max	60	00	mA
collector current Peak		I _{CM}	Max	80	00	mA
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	Max	250		mW
	I _C = 150mA, V _{CE} = 10 V	h _{FE}	Min	100		
DC Current Gain	$I_C = 150 \text{mA}, V_{CE} = 10 \text{ V}$	h _{FE}	Max	300		1
	$I_C = 500 \text{ mA}, V_{CE} = 10 \text{ V}$	h _{FE}	Min	30	40	
Transition Frequency at f = 100 MHz	I _C = 20 mA, V _{CE} = 20 V	f _T	Min	250	300	MHz
Storage Temperature Range		T_{stg}	Min	-5	55	°C
		T _{stg}	Max	1:	50	°C
Junction Temperature		T _j	Max	1:	50	°C
THERMAL RESISTANCE		•	•			
From junction to ambient		$R_{ hetaja}$		50	00	K/W

An IATF 16949, ISO9001 and ISO 14001/ISO 45001 Certified Company

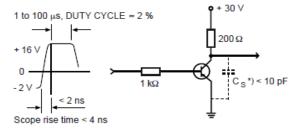
ELECTRICAL CHARACTERISTICS (T_j = 25 °C Unless Otherwise Specified)

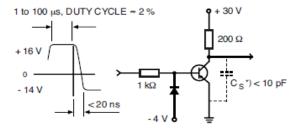
Parameter	Symbol	Test Conditions	Min/ Max	CMBT 2222	CMBT 2222A	Unit
Collector Emitter Breakdown Voltage	BV _{CEO}	Ic=10mA, Ib=0	Min	30	40	V
Collector Base Break down Voltage	BV _{CBO}	$I_{\rm C} = 100 \text{uA}; I_{\rm E} = 0$	Min	75		V
Emitter Base Break down Voltage	BV_{EBO}	BV_{EBO} $I_C = 0; I_E = 10uA$		Min 6		V
Emitter-Base cutoff Current	I _{CB0}	V_{CE} =60V, V_{EB} =3.0V	max		20	nA
Emitter-Base Cutoff Current	I _{EBO}	V_{EB} =3V, Ic=0	Max		100	nA
	I _{CBO}	$I_{E} = 0$, $V_{CB} = 50 \text{ V}$	Max	0.01	0.01	μΑ
	I _{CBO}	$I_{E} = 0$, $V_{CB} = 60 \text{ V}$	Max	-	0.01	μΑ
Collector Cut Off Current	I _{CBO}	$V_{EB} = 3V; V_{CE} = 60V$	Max	10	10	nA
Concotor Gut on Gurrent	I _{CBO}	$I_E = 0; V_{CB} = 60V;$ Tj = 125 °C	Max	1	0	μΑ
	I _{CEX}	$V_{EB} = 3V, V_{CE} = 60V$	Max	1	0	nA
Base current with reverse biased Emitter Junction	I _{BEX}	V _{FB} =3V, V _{CE} = 60V	Max	2	.0	nA
Emitter-base cut-off current	I _{EBO}	$I_{\rm C} = 0, V_{\rm EB} = 3V$	Max	1	0	nA
	V_{CESat}		Max	400	300	mV
	V _{BESat}	I _C = 150mA , I _B = 15mA	Min	-	0.6	
Saturation Voltages	V _{BESat}		Max	1.3	1.2	V
	V _{CESat}	I = 500m A I = 50m A	Max	1.6	1	V
	V _{BESat}	I _C = 500mA , I _B = 50mA	Max	2.6	2	V
	$V_{BR(CEO)}$	$I_C = 1 \text{mA}, I_B = 0$	Min	30	40	V
Breakdown Voltages	V _{BR(CBO)}	I _C = 100μA, I _E = 0	Min	60	75	V
	$V_{BR(EBO)}$	I _C = 0, I _E = 10μA	Min	5	6	V
	Ì	$I_{\rm C} = 0.1 \text{mA}; V_{\rm CE} = 10 \text{V}$	Min	3	55	
		$I_{\rm C}$ = 1mA; $V_{\rm CE}$ = 10V	Min	5	50	
		$I_{\rm C}$ = 10 mA; $V_{\rm CE}$ = 10 V	Min 75		'5	
		$I_C = 10\text{mA}, V_{CE} = 10\text{V}, T_j$ = 125°C	Min 35		5	
DC Current Gain	h _{FE}	I_{C} = 10 mA; V_{CE} = 10 V; T_{amb} = -55 °C	Min	3	5	
		I _C = 150mA; V _{CE} = 10V	Min	10	00	
		I _C = 150mA; V _{CE} = 10V	Max	300		
		$I_{\rm C}$ = 150mA; $V_{\rm CE}$ = 1V	Min	5	0	
		$I_{\rm C}$ = 500mA; $V_{\rm CE}$ = 10V	Min	30	40	

An IATF 16949, ISO9001 and ISO 14001/ISO 45001 Certified Company

ELECTRICAL CHARACTERISTICS (T,					
Current - Gain - Bandwidth Product	f⊤	$V_{CE} = 20 \text{ V}, I_{C} = 20 \text{ mA},$ f = 100 MHz	Min	300	MHz
Input Impedance		V_{CE} = 10V, I_{C} = 1mA	Min	2	
	h	f = 1 kHz	Max	8	kΩ
	h _{ie}	V _{CE} = 10V, I _C = 10mA	Min	0.25	KLZ
			Max	1.25	

Parameter	Symbol	Test Conditions	Min/ Max	CMBT 2222	CMBT 2222A	Unit
		V _{CE} =10 V, I _C =1 mA	Min		0	
Voltage feedback Ratio	h _{re}	VCE TO V, TC T TIME	Max		00	
l chage to a account take	f=1 kHz		Min		'5 	
		V _{CF} =10 V, I _C =1mA,	Max		375 5	
		0_ 1	Min			
Output Admittance	h _{oe}	$f=1 \text{ kHz}$ $V_{CE}=10 \text{ V, } I_{C}=10 \text{ mA,}$	Max Min		35 25	umhos
		f=1 kHz	Max	25 200		
Collector Base Time constant	r _b C _{CC}	$I_E = 20 \text{ mA}, V_{CB} = 20 \text{ V}, f$ = 31.8 MHz	Max.		50	ps
Transition Frequency at f = 100 MHz	f _T	$I_{\rm C}$ = 20mA, $V_{\rm CE}$ = 20V	Min	250	300	MHz
Output Capacitance at f =1 MHz	C _o	I _E = 0 , V _{CB} = 10V	Max		8	pF
Input Capacitance at f = 1 MHz	C _i	$I_C = 0, V_{EB} = 0.5V$	Max	30	25	pF
Noise figure at Rs = 1 KΩ	NF	$I_{C} = 100 \mu A, V_{CE} = 10 V,$ f = 1 KHz	Max		4	dB
Delay Time ^{fig.1}	t _d	V_{CC} =30V, V_{BEoff} =-0.5V, I_{C} =150mA , I_{B1} = 15mA	Max	10		ns
Rise Time ^{fig.1}	t _r	V_{CC} =30V, V_{BEoff} =-0.5V, I_{C} =150mA , I_{B1} = 15mA	Max 25		25	ns
Storage Time ^{fig.2}	t _s	$V_{CC} = 30V, I_C = 150mA, I_{B1} = -I_{B2} = 15mA$ Max		2:	25	ns
Fall Time fig.2	t _f	$V_{CC} = 30V, I_C = 150mA,$ $I_{B1} = -I_{B2} = 15mA$		6	60	ns
SWITCHING TIME (BETWEEN 10% AND 90% LEVELS)						
		$I_C = 1 \text{ mA}, V_{CE} = 10 \text{ V},$	Min	5	50	
Small Signal Current Cain	h	f = 1KHz	Max	3	00	
Small Signal Current Gain	h _{FE}	$I_{\rm C}$ = 10 mA, $V_{\rm CE}$ =10 V,	Min	7	' 5	
		f = 1KHz	Max	375		




An IATF 16949, ISO9001 and ISO 14001/ISO 45001 Certified Company

Test circuits

Total shunt capacitance of test jig,connectors and oscilloscope

Fig. 1. Turn-On Time

.Total shunt capacitance of test jig, connectors and oscilloscope

Fig. 2. Turn-Off Time

An IATF 16949, ISO9001 and ISO 14001/ISO 45001 Certified Company

Typical Characteristic curves

Fig 3: Typical VBE vs Collector Current

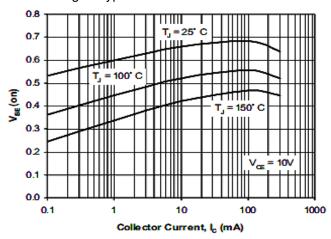


Fig 4:Typical V_{CE (sat)} vs Collector Current

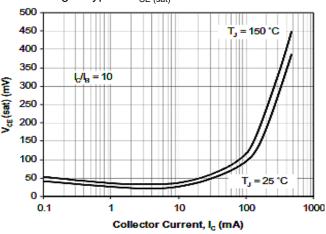
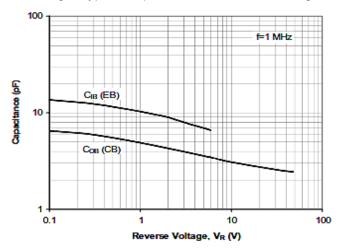



Fig 5:Typical Capacitance vs Reverse Voltage

CMBT2222A Rev6_27042024M

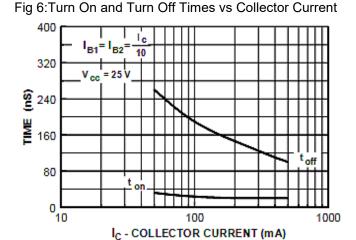


Fig 7:Typical $V_{\text{BE (sat)}}$ vs Collector Current

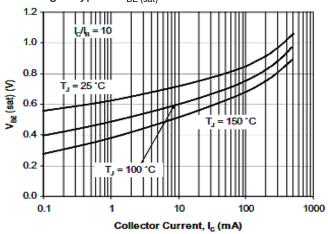



Fig 8:Typical Collector Saturation Region

Typical Characteristic curves

Fig 9: Gain Bandwidth Product VS. Collector Current

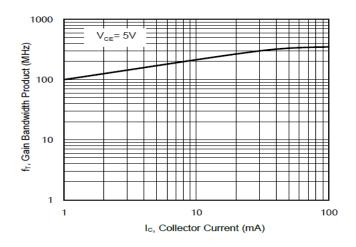


Fig 11: Frequency effects

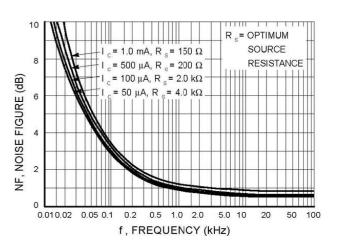
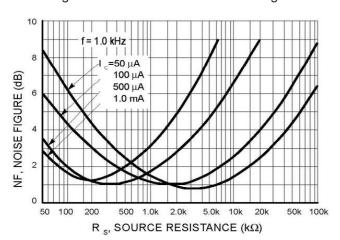
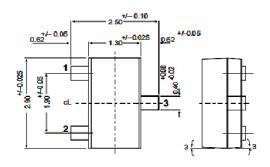
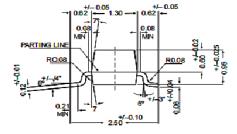



Fig 10:Source resistance Vs Noise Figure



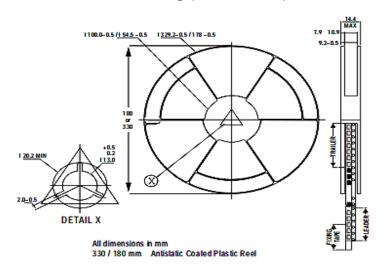


PACKAGE DETAILS

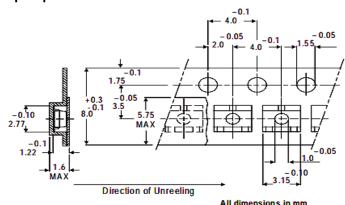
SOT-23 SMD Package

PIN CONFIGURATION (NPN)

- 1. BASE
- 2. EMITTER
- 3. COLLECTOR



Reel specifications for Packing (13"/7" reels)



Size of Tape	8mm	8mm
Size of reel	330mm (13")	180mm (7")
No. of Device	10,000 Pcs	3,000 Pcs

NOTES:

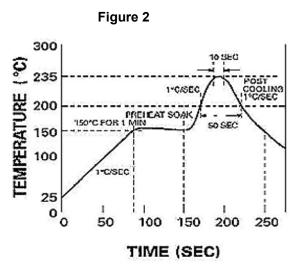
- 1. The bandoier of 330mm reel contains at least 10,000 device.
- 2. The bandoier of 180mm reel contains at least 3.000 device.
- 3. No more than 0.5% missing device/reel 50 empty compartments for 330mm reel. 15 empty compartments for
- 4. Three consecutive empty places might be found provided this gap is followed by 6 consecutive devices.
- 5. The carrier tape (leader) starts with at least 75 empty positions (equivalent to 330 mm). In order to fix the carrier tape a self adhesive tape of 20 to 50 mm is applied. At the end of the bandolier at least 40 empty positions (equivalent to 160 mm) are there.

Tape Specification for SOT-23 Surface Mount Device

Packing Detail

PACKAGE	STANDA	ARD PACK	INNER CARTO	N BOX	OUTER C	ARTON BOX	
	Details	Net Weight/Oty	Size	Qty	Size	Qty	Gr Wt
CMBT2222A	3K/reel	136 gm/3K pcs	3" x 7.5" x 7.5" 9" x 9" x 9"		17" x 15" x 13.5" 19" x 19" x 19"	192.0K 408.0K	12 kgs 28 kgs
Rev6_27042	012044.Weel	415 gm/10K pcs	13" x 13" x 0.5"	10.0K	17" x 15" x 13.5"	300.0K	16 kgs




Recommended Reflow Solder Profiles

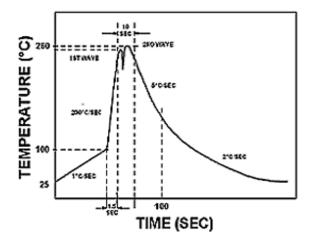
The recommended reflow solder profiles for Pb and Pb-free devices are shown below.

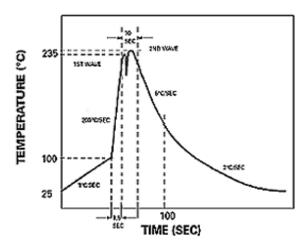
Figure 1 shows the recommended solder profile for devices that have Pb-free terminal plating, and where a Pb-free solder is used.

Figure 2 shows the recommended solder profile for devices with Pb-free terminal plating used with leaded solder, or for devices with leaded terminal plating used with a leaded solder.

Reflow profiles in tabular form

Profile Feature	Sn-Pb System	Pb-Free System
Average Ramp-Up Rate	~3°C/second	~3°C/second
Preheat – Temperature Range – Time	150-170°C 60-180 seconds	150-200°C 60-180 seconds
Time maintained above: – Temperature – Time	200°C 30-50 seconds	217°C 60-150 seconds
Peak Temperature	235°C	260°C max.
Time within +0 -5°C of actual Peak	10 seconds	40 seconds
Ramp-Down Rate	3°C/second max.	6°C/second max.




An IATF 16949, ISO9001 and ISO 14001/ISO 45001 Certified Company

Recommended Wave Solder Profiles

The Recommended solder Profile For Devices with Pb-free terminal plating where a Pb-free solder is used

The Recommended solder Profile For Devices with Pb-free terminal plating used with leaded solder, or for devices with leaded terminal plating used with leaded solder

Wave Profiles in Tabular Form

Wave Fromoe in Tabalar Form					
Profile Feature	Sn-Pb System	Pb-Free System			
Average Ramp-Up Rate	~200°C/second	~200°C/second			
Heating rate during preheat	Typical 1-2, Max 4°C/sec	Typical 1-2, Max 4°C/Sec			
Final preheat Temperature	Within 125°C of Solder Temp	Within 125°C of Solder Temp			
Peak Temperature	235°C	260°C max.			
Time within +0 -5°C of actual Peak	10 seconds	10 seconds			
Ramp-Down Rate	5°C/second max.	5°C/second max			

Recommended Product Storage Environment for Discrete Semiconductor Devices

This storage environment assumes that the Diodes and transistors are packed properly inside the original packing supplied by CDIL.

- · Temperature 5 °C to 30 °C
- · Humidity between 40 to 70 %RH
- · Air should be clean.
- · Avoid harmful gas or dust.
- · Avoid outdoor exposure or storage in areas subject to rain or water spraying .
- · Avoid storage in areas subject to corrosive gas or dust. Product shall not be stored in areas exposed to direct sunlight.
- · Avoid rapid change of temperature.
- · Avoid condensation.
- · Mechanical stress such as vibration and impact shall be avoided.
- · The product shall not be placed directly on the floor.
- The product shall be stored on a plane area. They should not be turned upside down. They should not be placed against the wall.

Shelf Life of CDIL Products

The shelf life of products is the period from product manufacture to shipment to customers. The product can be unconditionally shipped within this period. The period is defined as 2 years.

If products are stored longer than the shelf life of 2 years the products shall be subjected to quality check as per CDIL quality procedure.

The products are further warranted for another one year after the date of shipment subject to the above conditions in CDIL original packing.

Floor Life of CDIL Products and MSL Level

When the products are opened from the original packing, the floor life will start.

For this, the following JEDEC table may be referred:

	JEDEC MSL Level				
Level	Time	Condition			
1	Unlimited	≤30 °C / 85% RH			
2	1 Year	≤30 °C / 60% RH			
2a	4 Weeks	≤30 °C / 60% RH			
3	168 Hours	≤30 °C / 60% RH			
4	72 Hours	≤30 °C / 60% RH			
5	48 Hours	≤30 °C / 60% RH			
5a	24 Hours	≤30 °C / 60% RH			
6	Time on Label(TOL)	≤30 °C / 60% RH			

Customer Notes

Component Disposal Instructions

- 1. CDIL Semiconductor Devices are RoHS compliant, customers are requested to please dispose as per prevailing Environmental Legislation of their Country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished in the Data Sheet and on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered trademark of

Continental Device India Pvt. Limited