

60V N-Channel MOSFET

CDD58N06

TO-252 (DPAK) Surface Mount Plastic Package RoHS compliant

TO-252 (DPAK)

General Description

These N-Channel enhancement mode power field effect transistors are produced using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance and gate charge, provide superior switching performance and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for UPS, power switching and a wide variety of other applications.

I_{D(max)}=58A,

 $BV_{DS}S=60V$,

 $R_{DS(on)} = 11m\Omega @V_{GS} = 10V$

FEATURES:

- 1. Low on-state resistance
- 2. Fast switching
- 3. High Power and current whanding capability

4. Lead free product

APPLICATION:

- 1. High Current, High Speed
- 2. Motor Control, Audio Amplifiers
- 3. DC-DC & DC-AC Converters

ABSOLUTE MAXIMUM RATINGS (T_a = 25 $^{\circ}$ C)

Parameters	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	60	V
Gate-Source Voltage	V _{GS}	±20	V
Continuous Drain Current ,V _{GS} @ 10V (Tc =25°C) ¹		58	А
Continuous Drain Current ,V _{GS} @ 10V (Tc =100°C) ¹	ι _D	48	A
Pulsed Drain Current ²	I _{DM}	240	А
Power Dissipation (25°C)	Б	85	W
Power Dissipation (25°C) Derating Factor	P _D	0.57	W/ºC
Single pulse avalanche energy ⁴	E _{AS}	300	mJ
Thermal Resistance, Junction to Case ³	R _{eJC}	2	°C/W
Thermal Resistance, Junction to Ambient ^{5, 6}	R _{eja}	62	°C/W
Operating and Storage Temperature Range	T _j ,T _{STG}	-55 to +175	°C

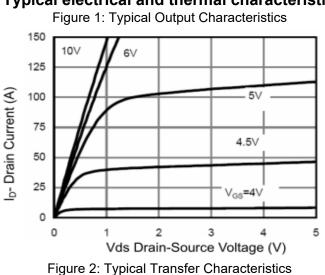
ELECTRICAL CHARACTERISTICS at $T_a = 25 \text{ °C}(\text{Unless otherwise specified})$

Paramatar	Ourse had	mbol Tost Conditions		Value		
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	V _{GS} =0V,I _D =250µA	60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V, V _{GS} =0V	-	-	1	μA
Gate to Body Leakage Current	I _{GSS}	V_{DS} =0V, V_{GS} =± 20V	-	-	±100	nA
On Characteristics						8
Gate Threshold Voltage	$V_{GS(TH)}$	V_{DS} = V_{GS} , I_D = 250 μ A	1	-	2.5	V
Static Drain-Source on-Resistance	R _{DS(on)**}	V _{GS} =10V, I _D =30 A	-	11	15	mΩ
Forward Transconductance	9 _{FS}	V _{DS} =10V, I _D =30A	20	-	-	S
Dynamic Characteristics						
Input Capacitance	C _{iss}		-	2740	-	pF
Output Capacitance	C _{oss}	V _{DS} =50V, V _{GS} = 0V, f = 1.0MHz	-	185	-	pF
Reverse Transfer Capacitance	C _{rss}		-	90	-	pF
Total Gate Charge	Q _g		-	46	-	nC
Gate-Source Charge	Q_gs	V _{DS} =30V, I _D =30A, V _{GS} =10V	-	9	-	nC
Gate-Drain("Miller") Charge	Q_gd	$V_{GS} = 10V$	-	16	-	nC
Switching Characteristics						
Turn-on Delay Time	t _{d(on)}		-	15	-	ns
Turn-on Rise Time	t _r	V _{DD} = 30V, I _D =30A,	-	38	-	ns
Turn-off Delay Time	$t_{d(off)}$	R _G =2.5Ω, V _{GS} =10 V	-	51	-	ns
Turn-off Fall Time	t _f		-	23	-	ns
Drain-Source Diode Characteristi	cs and Ma	aximum Ratings			•	-
Maximum Continuous Drain to			-	-	58	Α
Maximum Pulsed Drain to Source			-	-	232	Α
Drain to Source Diode Forward	V_{SD}	V _{GS} =0V, I _S =30A	-	0.9	1.3	V
Reverse Recovery Time	t _{rr}	I _F =30A, dI/dt=100A/µs,	-	55	-	ns
Reverse Recovery Charge	Q _{rr}	T _J =25°C	-	63	-	nC

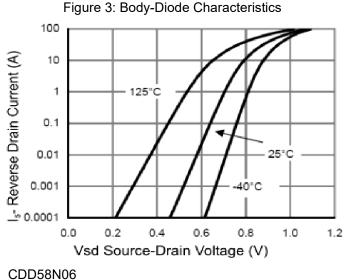
Notes:

1. Based on $T_{J(MAX})$ =175°C in a TO252 package, using junction-to-case thermal resistance

- 2. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =175°C.
- 3. Surface Mounted on FR4 Board, $t \le 10$ sec.
- 4. EAS condition : T_j=25 $^\circ C$,V_{DD}=20V,V_G=10V,L=0.5mH,R_g=25\Omega , I_{AS}=35A


5.The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.

6. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}C$.



Typical electrical and thermal characteristics:

100 V_{DS}=10V 80 Ip- Drain Current (A) 60 40 125°C 25°C 20 40°C 0 2 2.5 3 3.5 4 4.5 5 5.5 Vgs Gate-Source Voltage (V)

Rev1_24042024FC

Figure 4: On-Resistance vs. Junction Temperature

Figure 5: Capacitance Characteristics

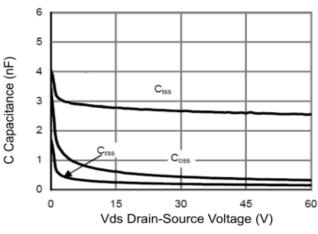
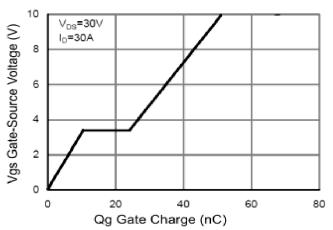



Figure 6: Gate-Charge Characteristics

Continental Device India Pvt. Limited

Typical electrical and thermal characteristics:

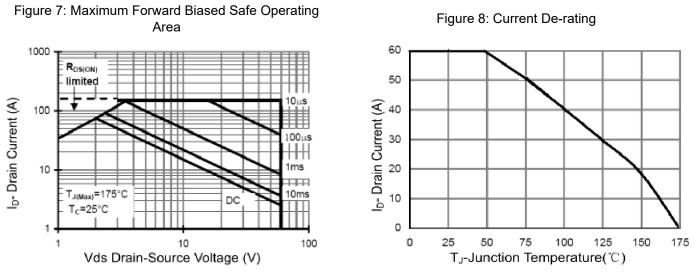
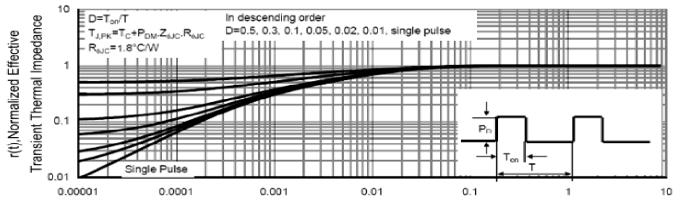



Figure 9: Normalized Maximum Transient Thermal Impedance

Square Wave Pluse Duration(sec)

Continental Device India Pvt. Limited An IATF 16949, ISO9001 and ISO 14001/ISO 45001 Certified Company Test circuits and Waveforms:

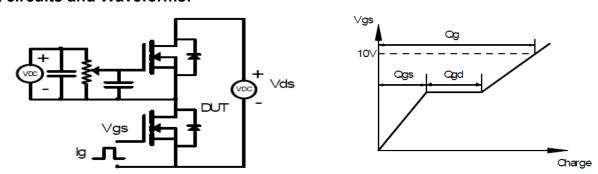
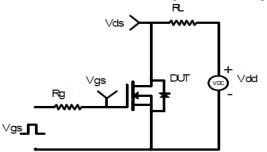
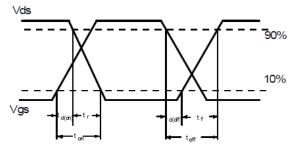
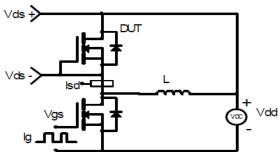





Fig 1: Gate Charge Test Circuit & Waveform

Fig 2: Resistive Switching Test Circuit & Waveforms

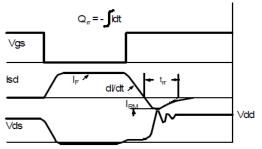
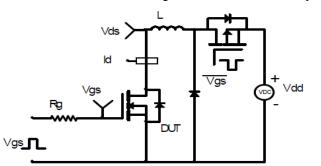



Figure 3. Reverse recovery test circuit and waveform

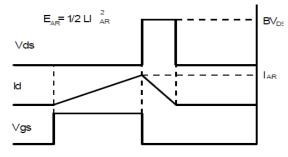
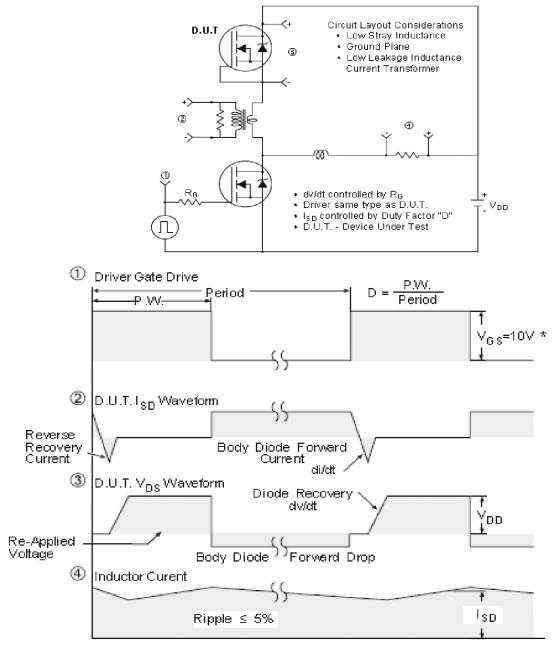
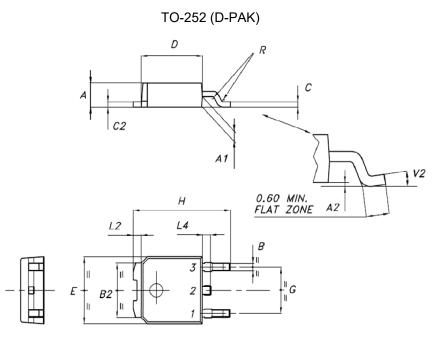


Figure 4. EAS test circuit and waveform

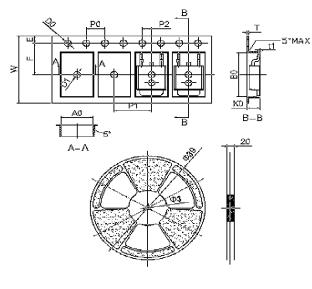

CDD58N06 Rev1_24042024FC

Continental Device India Pvt. Limited

Typical Performance Characteristics


* V_{GS} = 5V for Logic Level Devices

Package Details:

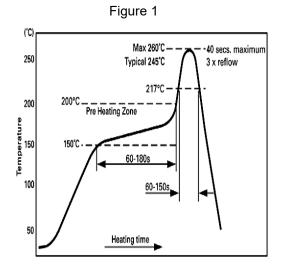


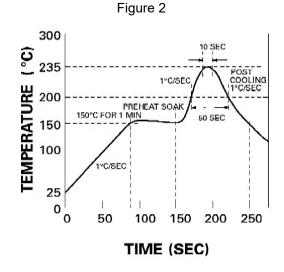
DIM.		mm		inc	inch	nch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	2.20		2.40	0.087		0.094	
A1	0.90		1.10	0.035		0.043	
A2	0.03		0.23	0.001		0.009	
В	0.64		0.90	0.025		0.035	
B2	5.20		5.40	0.204		0.213	
С	0.45		0.60	0.018		0.024	
C2	0.48		0.60	0.019		0.024	
D	6.00		6.20	0.236		0.244	
E	6.40		6.60	0.252		0.260	
G	4.40		4.60	0.173		0.181	
Н	9.35		10.10	0.368		0.398	
L2		0.8			0.031		
L4	0.60		1.00	0.024		0.039	
V2	0 ⁰		8°	0°		0°	

Reel Spectification-TO-252 (D-PAK)

	Dimensions					
Ref.	Millimeters		rs	Inches		
	Min.	Тур.	Max.	Min.	Typ.	Max.
w	15.90	16.00	16.10	0.626	0.630	0.634
E	1.65	1.75	1.85	0.065	0.069	0.073
F	7.40	7.50	7.60	0.291	0.295	0.299
D0	1.40	1.50	1.60	0.055	0.059	0.063
D1	1.40	1.50	1.60	0.055	0.059	0.063
P0	3.90	4.00	4.10	0.154	0.157	0.161
P1	7.90	8.00	8.10	0.311	0.315	0.319
P2	1.90	2.00	2.10	0.075	0.079	0.083
A0	6.85	6.90	7.00	0.270	0.271	0.276
B0	10.45	10.50	10.60	0.411	0.413	0.417
К0	2.68	2.78	2.88	0.105	0.109	0.113
Т	0.24		0.27	0.009		0.011
t1	0.10			0.004		
10P0	39.80	40.00	40.20	1.567	1.575	1.583

Packing	Reels (Pcs)	Per Carton (Pcs)	Tape& Reel
Taping	2,500	25,000	13 inch



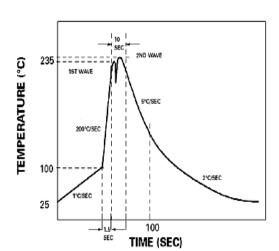

Recommended Reflow Solder Profiles

The recommended reflow solder profiles for Pb and Pb-free devices are shown below.

Figure 1 shows the recommended solder profile for devices that have Pb-free terminal plating, and where a Pb-free solder is used.

Figure 2 shows the recommended solder profile for devices with Pb-free terminal plating used with leaded solder, or for devices with leaded terminal plating used with a leaded solder.

Reflow profiles in tabular form


Profile Feature	Sn-Pb System	Pb-Free System
Average Ramp-Up Rate	~3°C/second	~3°C/second
Preheat		
– Temperature Range	150-170°C	150-200°C
– Time	60-180 seconds	60-180 seconds
Time maintained above:		
– Temperature	200°C	217°C
– Time	30-50 seconds	60-150 seconds
Peak Temperature	235°C	260°C max.
Time within +0 -5°C of actual Peak	10 seconds	40 seconds
Ramp-Down Rate	3°C/second max.	6°C/second max.

Recommended Wave Solder Profiles

The Recommended solder Profile For Devices with Pb-free terminal plating where a Pb-free solder is used

The Recommended solder Profile For Devices with Pb-free terminal plating used with leaded solder, or for devices with

leaded terminal plating used with leaded solder

	Wave	Profiles	in	Tabular	Form
--	------	-----------------	----	---------	------

Profile Feature	Sn-Pb System	Pb-free System			
Average Ramp-Up Rate	~200°C/second	~200°C/second			
Heating rate during preheat	Typical 1-2, Max 4°C/sec	Typical 1-2, Max 4°C/Sec			
Final preheat Temperature	Within 125°C of Solder Temp	Within 125°C of Solder Temp			
Peak Temperature	235°C	260°C max.			
Time within +0 -5°C of actual Peak	10 seconds	10 seconds			
Ramp-Down Rate	5°C/second max.	5°C/second max.			

Recommended Product Storage Environment for Discrete Semiconductor Devices

This storage environment assumes that the Diodes and transistors are packed properly inside the original packing supplied by CDIL.

- Temperature 5 °C to 30 °C
- Humidity between 40 to 70 %RH
- Air should be clean.
- Avoid harmful gas or dust.
- Avoid outdoor exposure or storage in areas subject to rain or water spraying .
- Avoid storage in areas subject to corrosive gas or dust. Product shall not be stored in areas exposed to direct sunlight.
- Avoid rapid change of temperature.
- Avoid condensation.
- Mechanical stress such as vibration and impact shall be avoided.
- The product shall not be placed directly on the floor.
- The product shall be stored on a plane area. They should not be turned upside down. They should not be placed against the wall.

Shelf Life of CDIL Products

The shelf life of products is the period from product manufacture to shipment to customers. The product can be unconditionally shipped within this period. The period is defined as 2 years.

If products are stored longer than the shelf life of 2 years the products shall be subjected to quality check as per CDIL quality procedure.

The products are further warranted for another one year after the date of shipment subject to the above conditions in CDIL original packing.

Floor Life of CDIL Products and MSL Level

When the products are opened from the original packing, the floor life will start. For this, the following JEDEC table may be referred:

	JEDEC MSL Level					
Level	Time	Condition				
1	Unlimited	≤30 °C / 85% RH				
2	1 Year	≤30 °C / 60% RH				
2a	4 Weeks	≤30 °C / 60% RH				
3	168 Hours	≤30 °C / 60% RH				
4	72 Hours	≤30 °C / 60% RH				
5	48 Hours	≤30 °C / 60% RH				
5a	24 Hours	≤30 °C / 60% RH				
6	Time on Label(TOL)	≤30 °C / 60% RH				

Customer Notes

Component Disposal Instructions

- 1. CDIL Semiconductor Devices are RoHS compliant, customers are requested to please dispose as per prevailing Environmental Legislation of their Country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished in the Data Sheet and on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered trademark of

Continental Device India Pvt. Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.

Telephone +91-11-2579 6150, 4141 1112 Fax +91-11-2579 5290, 4141 1119

email@cdil.com www.cdil.com

CIN No. U32109DL1964PTC004291

CDD58N06 Rev1_24042024FC

Continental Device India Pvt. Limited